ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Implementation of Area Optimized Advanced
Encryption Standard

P.Kishore Raju’, G.Nirosha?, K.Bhargavi®, S.Anjaneyulu*

IJARCCE

Student, E.C.E, S.K University College of Engineering, Anantapuramu, India® 3

Assistant Professor, E.C.E, SK University College of Engineering, Anantapuramu, India*

Abstract: Advanced Encryption Standard (AES) is the current standard for secret key encryption. AES was created by
two Belgian cryptographers, Vincent Rijmen and Joan Daemen, to overcome the disadvantages of Data Encryption
Standard (DES). The Federal Information Processing Standard 197 used a standardized version of the algorithm called
Rijndael for the Advanced Encryption Standard. The algorithm uses a combination of Exclusive-OR operations (XOR),
substitution with an S-box transformation, row and column rotations, and a MixColumns. All the transformations of
encryption are simulated using an iterative design approach in order to minimize the hardware consumption.To reduce
manual operations a verilog code is developed ,synthesis and simulations of code is done by using Xilinx and
Modelsim.It was successful because it was easy to implement and could run in a reasonable amount of time on a
regular computer.

Key Words: EDK, REAL TIME COMMUNICATION, AGS, SECURITY, XPS, RTOS.

I INTRODUCTION
The Advanced Encryption Standard, in the following transformation requires a second input, which is the secret
referenced as AES, is the winner of the contest, held in key. It is important to know that the secret key can be of
1997 by the US Government, after the Data Encryption any size (depending on the cipher used) and that AES uses
Standard was found too weak because of its small key three different key sizes: 128, 192 and 256 hits
size and the technological advancements in processor

power. Fifteen candidates were accepted in 1998 and INPUT CIPHER KEY
based on public comments the pool was reduced to five - -
finalists in 1999. In October 2000, one of these five 32 2B
algorithms was selected as the forthcoming standard: a 43 TE
slightly modified version of the Rijndael
; Fé 15
AR 16
88 28
5A AE
30 D2
8D A6
31 AB
31 F7
Key 98 15
Gen
= A2 88
EO 09
The Rijndael, whose name is based on the names of its 37 CF
two Belgian inventors, Joan Daemen and Vincent
Rijmen, is a Block cipher, which means that it works on 07 4F
fixed-length group of bits, which are called blocks. It takes
an input block of a certain size, usually 128, and produces 34 3C

a corresponding output block of the same size. The

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4454 241

IJARCCE

Vol. 4, Issue 4, April 2015

32 8831 k0 19 |AD | 9A | E9 [28 28 | AB | 09
43593137 3D |F4 | C6 |F8 7€ | A€ [F7 | cCF
F6 [30|98 | 07 @ E3 | E2 | 8D |48 ‘::> 15 [D2 |15 | 4F
A3 | 8d | A2 | 34 BE | 2B | 2A |08 |16 | A6 | 88 | 3C

SUB-BYTE TRANSFORMATION TABLE:

] 1] 2 al 5] o] d
€3 [7c | 77| b | £2 | 6b| 6F | 5| 30 | 01| 67 | 2b| fe | 47 | ab | 76
ca | 62| c9| 7d| fa | 59| 47| £0 | ad | dd | a2 | af | 8c | ad | 72| a0
b7 | fd | 93| 26 | 36 | 3£ | £7 | cc | 34 | a5 | 5| £1| 71| d8 | 31 | 15
04| 7] 23] c3 | 18] 96| 05| 9a| 07| 12| 80| o2 | b | 27| b2 | 75
05| 83| 2c | 1a| 1b| e | 5a| a0 | 52 | 3b| d6 | ba| 29| e3| 26| 84
53| d1| 00| ed | 20| fo | bl | 5b | 6a | cb| be| 38| 4a | 4c | 56 of

ef | an| #n| a3 | dd | 33| 85| a5 | €9 | 02| 7f| 50 | 3c | 9¢ | a8
51| a3 | 40| B8f[92| 5d| 38| £5 | bc | b6 | da| 21| 10| ££| 3 d2
cd| 0c| 13| ec| 52| 97 44| 17| cd | a7 | 7e| 3a| 64| 5d | 15| 73
60 | 81| 4f | dc | 22 | 2a| 30| 88 | 46 | ee | b8 | 14| de | 5e | Ob db
@0 | 32 | 3a| Oa| 45 | 06| 24 | 5o | o2 | 43 | ac| 62| 81| 95 | ed | 78
@7 | cB | 37| 6d | Bd | d5 | de | a9 | 6c | 56 | £4 | ea | 65 | 7a | as | 0B
ba| 78 | 25| 20 | 1c | a6 | ba | c6 | e6 | dd | 74| 1f | 4b | bd | 8b | Ba
70 | 3e | b5 | 66| 4B | 03| £6 | De | 61 | 35| 57 | b3 | 86 | c1| 1d | 9e
©1 | £6| 96 | 11| 69| 49| 80| 94 | 9b | le | 87 | o9 | ce | 55 | 26 | df
Bc | a1l | 89| 04| bf| e6| 42| 68 41| 99| 2d| 0f | b0 | 53 | b5 | 16

e [ale]r]s [v]a]uln]uls]w]n]s]s]
o
5

SUB BYTE TRANSFORMATION:

19 | A0 | 9a | E9 D4 | E0 | B8 | 1e
3d | F4 | C6 | F8 N 27 | Bf | B4 |41
E3[F2 [8d 48|l 111|98 5d|52
Be | 2b | 2a | 08 Ae | F1 | E5 | 30
SHIFT ROW TRANSFORMATION:
D4[E0O[B8] 1e D4 | EO | B8 | 1E
27 | Bf | B4 | 41 BF | B4 |41 |27
11198 |5D | 52 5D |52 |11 98
AE | F1]E530] 30 |AE|F1E5
MIXCOLUMNS:

The MixColumns() transformation operates on the State
column-by-column treating each column as a four-term
polynomial as described. The columns are considered as
polynomials over GF(2%) and multiplied modulo x* + 1

with a fixed polynomial a(x), given by a(x) =
{0313+{01}x*+{01}x+{02}
The above equation can be described as below:
i)
1231 % _
1123
3112
v Y v ¢
So0 | Sa1 | So2 | 503 550 | So1 | 02 [%oa
S10| 510 | 512 | S1a2 B EER LT
S30 | S21 [522 | S23 ERENERET
S30| 831 | 532 | S33 EMENERE

The following examples are denoted in HEX Mix Column
Example During Encryption Input = D4 BF 5D 30
Output(0) = (D4 * 2) XOR (BF*3) XOR (5D*1) XOR
(30*1)

= E(L(D4) + L(02)) XOR E(L(BF) + L(03)) XOR 5D
XOR 30

= E(41 + 19) XOR E(9D + 01) XOR 5D XOR 30

= E(5A) XOR E(9E) XOR 5D XOR 30

= B3 XOR DA XOR 5D XOR 30

=04

Output(l) = (D4 * 1) XOR (BF*2) XOR (5D*3) XOR
(30*1)

= D4 XOR E(L(BF)+L(02)) XOR E(L(5D)+L(03)) XOR
30

= D4 XOR E(9D+19) XOR E(88+01) XOR 30

Copyright to IJARCCE

DOI 10.17148/IJARCCE.2015.4454

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

= D4 XOR E(B6) XOR E(89) XOR 30

= D4 XOR 65 XOR E7 XOR 30

= 66

Output(2) = (D4 * 1) XOR (BF*1) XOR (5D*2) XOR
(30*3)

= D4 XOR BF XOR E(L(5D)+L(02))
E(L(30)+L(03))

= D4 XOR BF XOR E(88+19) XOR E(65+01)

= D4 XOR BF XOR E(A1) XOR E(66)

= D4 XOR BF XOR BA XOR 50

=81

Output(3) = (D4 * 3) XOR (BF*1) XOR (5D*1) XOR
(30*2)

= E(L(D4)+L(3)) XOR BF XOR 5D XOR E(L(30)+L(02))
= E(41+01) XOR BF XOR 5D XOR E(65+19)

= E(42) XOR BF XOR 5D XOR E(7E)

= 67 XOR BF XOR 5D XOR 60

=E5

XOR

The multiplication mentioned above is performed over a
Galois Field. The mathematics behind this is beyond the
scope of this paper. This section will instead concentrate
On the implementation of the multiplication which can be
done quite easily with the use of the following two tables
ETable
0123456 78 9ABCDEF
0 0103050F113355FF1A2E7296A1F81335
15FE13848 D8 7395A4F7 0206 0A 1E 22 66 AA
2E5345CE4 3759 EB 26 6A BED9 7090 AB E6 31
353F5040C 14 3C44 CC4F D168 BB D3 6E B2 CD
44CD467 A9 E0 3B4D D762 A6F108 18287888
583 9EB9Y DO 6B BD DC7F 8198 B3 CE49DB 76 9A
6B5C457F9103050F0 0B 1D 27 69 BB D6 61 A3
7FE19 2B7D 87 92 AD EC 2F 7193 AE £9 2060 A0
8FB163A4ED26DB7 C25DE7 3256 FA153F41
9C35EE23D47 C940C05BED 2C749CBF DAT5
A9F BA D5 64 AC EF 2A 7E82 9D BC DF 7A8E 89 80
BOB B6 C158 E823 65 AF EA 256F BL C8 43 C554
CFC1F2163A5F407091B2D7799B0 CB46CA
D45 CF4ADE798B8691 ABE3 3E42 C651F3 0F
E12365A EE 29 7B 8D 8C 8F 8A85 94 A7 F20D 17
F394BDD7C8497A2 FD1C24 6CB4 C752F601

Mix COLUMN OUTPUT:

L Table

012 3456 78 939ABCDETF

0 00190132021AC64BC7 1B6833 EE DF0D3
16404E00E348D81EFACT7108C8F8691CC1
27DC21DB5F9B9 276A4DE4AAG6 729AC90978
3652F8A05210FEL12412F082453593 DASE
4968FDBBD36DOCES4135CD2F1404683 38
566DDFD30BF068B62B325E29822889110
67EBE48C3 A3 B6 1E423A6B2854FA853DBA
72B790A 159B9FSECA4EDAACES F373 A7 57
B8AFS58A850FAEA DG 744FAEE9 DS E7 E6 ADE8
92CD7757AEB160BF559CB5FBO9CA9 51 A0
AJFOCF66F17CA49ECD8431F2D A4767BB7
BCCBB 3ES5AFB60B1863B52A16CAAS55299D
C97B2879061BE DCFCBC95CFCD37 3F5BD1
D5339843C41A26D47142A9E5D56F2 D3 AB
E441192D923202E89B47CB8267799E3 AS
F67AAEDDECS531FE180D638CB0COF/7007

242

KEY GENERATION:

04 | EO | 48 | 28

66 | CB | F8 | 06

81 | 19 | D3 | 26

E5 | 9A | TA | 4C

KEY INPUT:

2B | 28 | AB | 09

7TE | AC | F7 | CF

15 | D2 | 15 | 4F

16 | AB | 88 | 3C

Steps:

1. Take Last Column Of Key Input:
09 CF 4F 3C

2. S-byte Transformation(Using ‘S’Table)
01 AB84EB

3. Shift left to One Position

8A 84 EB 01
ROUND RCON

VALUE
RO 01
R1 02
R2 04
R3 08
R4 10
R5 20
R6 40
R7 80
R8 1B
R9 36

4. Adding RCON Value To Step 3
[BA] [84] [EB] [01]
=> [01] [00] [00] ([0OO]

As total is 32 bits ‘01’ is added to MSB and Remaining

0’s
8A — 10001010

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

ITARCCE International Journal of Advanced Research in Computer and Communication Engineering
JAEVIGORY \/o!. 4, Issue 4, April 2015

5. 8B 84 EB 01 olumns
Each XOR with 4 columns
8b 84 eb 01
2b 7e 15 16

8B — 10001011 84—10000100
2B — 00101011 7e—01111110

10100000, 1111 1110
A 0 F A
EB—11101011
15— 00010101
11111110
F E

KEY EXPANDED OUTPUT:

A0 | 88 |23 |29

FA | 54 | A3 | 6C

FE | 2C | 39 76

17 | Bl |39 |05

04 EO 48 28

66 CB | F8 06

81 19 D3 26

ES5 9A | 7TA | 4C

ADD ROUND KEY OUTPUT:

A4 | 68 | 6B | 02

9C | 9F | 5B | 6A

7F | 35 | EA | 50

F2 | 2B | 43 | 49

First Cipher Key Output

01 — 00000000
1000 101

8 B

Copyright to IJARCCE

Implementing the algorithm manually is diffficult. In order
to reduce this, we are converting this algorithm into a
verilog code and can be synthesised,simulated using
XILINX and MODEL SIM tools.

DOI 10.17148/IJARCCE.2015.4454 243

IJARCCE

Vol. 4, Issue 4, April 2015

Mrom_c1

S-BOX BLOCK DIAGRAM :
S-BOX SIMULATION:

CIPHER SIMULATION:

S0 @ BB AL SERE | gpes B Ea
aaadn[Cumm

>
L Y

=
=
=
E

CONCLUSION

The Rijndael algorithm was chosen as the new Advanced
Encryption Standard (AES) for several reasons. The
purpose was to create an algorithm that was resistant
against known attacks, simple, and quick to code.
Choosing to use field GF(2)8 was a very good decision.
The block size and key size can vary making the algorithm
versatile.

Optimized and Synthesizable VHDL code is developed for
the implementation of encryption process. Each program
is tested with some of the sample vectors provided by
NIST and output results are perfect with minimal delay.
Therefore, AES can indeed be implemented with
reasonable efficiency on an FPGA, with the encryption
taking an average of 320 ns (for every 128 bits).

The time varies from chip to chip and the calculated delay
time can only be regarded as approximate. Adding data
pipelines and some parallel combinational logic in the key
scheduler and round calculator can further optimize this
design.

AES was originally designed for non-classified U.S.
government information, but, due to

Copyright to IJARCCE

DOI 10.17148/IJARCCE.2015.4454

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

ROUNDS SIMULATION:

5 e - -Ea

1 G LROS 2 ME S| SERE|| @4 e B o RELN BPOB S NS [B b Ll

13 RRARA [Ty mimI
—

its success, AES-256 is usable for top secret government
information [11]. As of July 2009, no practical attacks
have been successful on AES [12].

REFERENCES
Deshpande, A.M. Deshpande, M.S. Kayatanavar, D.N. "FPGA
implementation of AES encryption and decryption”, IEEE
Transactions, Print ISBN: 978-1-4244-4789-3 ,Jun 2009.
Muhammad H. Rais and Syed M. Qausim "Efficient Hardware
Realization of Advanced Encryption Standard Algorithm using
FPGA", IJCSNS International Journal of Computer Science and
Network Security, VOL.9 No.9, September 2009
Marko Mali, Franc Novak and Anton Biasizzo "Hardware
Implementation of AES Algorithm"”, Journal of Electrical
Engineering, VOL. 56, NO. 9-10, 2005, 265-269.
Rajender Manteena, "A VHDL Implementation of the Advanced
Encryption Standard- Rijndael Algorithm", College of Engineering
University of South Florida, 2004.

[1].

[21.

B3l

[41.

244

